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Abstract
By virtue of the technique of integration within an ordered product of operators
we derive the normal ordering expansion of the power of radial coordinate
operators in the n-dimensional coordinate space. The use of Bessel function
has greatly simplified the calculation. Moreover, the use of Kummer’s first
formula for the confluent hypergeometric function makes the result neat and
concise.

PACS number: 03.65.Pm

1. Introduction

In a recent paper [1] we have derived the normal ordering expansion of the Dirac’s radial
momentum operator [2], and the operator identities of the power of the radial coordinate
operator r̂ , r̂ corresponds to the radius value r = √

x2
1 + x2

2 + x2
3
. The derivation is proceeded

by virtue of the technique of integration within an ordered product (IWOP) of operators [3].
For example, we have shown that the normal ordering of r̂ k (k = 2m is even)

r̂2m =
m∑

l=0

(2m + 1)

4l(2m + 1 − 2l)!l!
: |r̂|2m−2l : (1)

where :: denotes normal ordering, r̂2 = X2
1 +X2

2 +X2
3,Xi is related to bosonic creation operator

a† and annihilation operator a by

Xi = 1√
2

(
a
†
i + ai

)
. (2)

An interesting question thus naturally arises: formula (1) holds in the three-dimensional
coordinate case, and r is SO(3) rotation invariant. How about if r is SO(n) rotation invariant,
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which means when r = √
x2

1 + x2
2 + · · · + x2

n
, r̂2 = X2

1 + X2
2 + · · · + X2

n, then how to modify
formula (1)? To put it in another way, what is the normal ordering expansion of operator
r̂ k defined in n-dimensional coordinate space? In the following we shall employ the IWOP
technique to discuss it.

We study the Hermitian radius operator r̂ k in n-dimensional coordinate space via the
equation

r̂ k =
∫

dn �x | �x〉〈�x|rk (3)

where | �x〉 is the n-dimensional coordinate eigenvector | �x〉 = |x1〉|x2〉 · · · |xn〉. As the first step,
we use the IWOP technique to truely perform the integration of

∫
dn �x | �x〉〈�x| in spherical polar

coordinates to confirm both the n-dimensional completeness relation and the feasibility of the
IWOP technique.

1.1. Preparation for the integration in n-dimensional spherical polar coordinate

The Fock space expansion of the n-dimensional coordinate eigenvector is

| �x〉 = π− n
4 exp

{
n∑

i=1

[
−1

2
x2

i +
√

2xia
†
i − 1

2
a
†2

i

]}
|�0〉. (4)

Using the normal ordering of the n-mode vacuum state projector

|�0〉〈�0| = : exp

[
−

n∑
i=1

a
†
i ai

]
: (5)

and defining r2 = ∑n
i=1 x2

i , �x = (x1, x2, . . . , xn),Xi = 1√
2

(
ai + a

†
i

)
, �X = (X1,X2, . . . , Xn),

we have

| �x〉〈�x| = π− n
2 : exp

{
n∑

i=1

[
−x2

i +
√

2xi

(
ai + a

†
i

)− 1

2

(
a
†2

i + a2
i

)− a
†
i ai

]}
:

= π− n
2 : exp{−r2 + 2�x · �X − �X2} : . (6)

�X is now within the normal ordering symbol :: and can be treated as a c-number vector when one
performs an integral over �x in equation (6). For simplifying the integration, we rotate the frame
of coordinate system �x to �x ′, a new frame of coordinates whose one component x ′

1 axis directs
along the �X vector, so that �x · �X = x ′

1
√

X2
1 + X2

2 + · · · + X2
n
. This rotation, keeping both

the radius r = r ′ = √∑n
i=1 x ′2

i
and the integration measure invariant, is an orthogonal

transformation with Jacobian being 1. Then equation (6) becomes∫
dn �x | �x〉〈�x| = π− n

2 :
∫

dn �x ′ exp{−r ′2 + 2|r̂|x ′
1 − |r̂|2} : (7)

where we have defined

|r̂| =
√

X2
1 + X2

2 + · · · + X2
n.

Now we are ready to integrate dn �x ′ of (7) in its n-dimensional spherical polar coordinate.
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1.2. The one-dimensional radial coordinate integration involved in
∫

dn �x | �x〉〈�x|
Firstly, we transform dn �x ′ to the volume element in spherical polar coordinates by setting

x ′
1 = r ′ cos θ1

x ′
2 = r ′ sin θ1 cos θ2

· · ·
x ′

n−1 = r ′ sin θ1 sin θ2 · · · sin θn−2 cos θn−1

x ′
n = r ′ sin θ1 sin θ2 · · · sin θn−2 sin θn−1

where 0 � θ1 < π, . . . , 0 � θn−2 < π, 0 � θn−1 < 2π . The Jacobian for the transformation
is

J = ∂(x ′
1, x

′
2, . . . , x

′
n)

∂(r ′, θ1, . . . , θn−1)
= r ′n−1

sinn−2 θ1 sinn−3 θ2 · · · sin θn−2.

Therefore,∫
dn �x | �x〉〈�x| = π− n

2

∫ ∞

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
dr ′ dθ1 · · · dθn−2 dθn−1

× r ′n−1

sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 : exp{−r ′2 + 2|r̂|r ′ cos θ1 − |r̂|2} : . (8)

Using the well-known formula∫ π

0
sinm θ dθ = �

(
1
2

)
�
(

m+1
2

)
�
(

m
2 + 1

)
where � is the Gamma function, and adopting the IWOP technique we perform the integrations
over the azimuth angles θ2, θ3, . . . , θn−1 in (8) one by one, and obtain∫

dn �x | �x〉〈�x| = 2√
π�

(
n−1

2

) :
∫ ∞

0
dr ′ r ′n−1

e−r ′2
∫ π

0
dθ1 sinn−2 θ1 e2|r̂|r ′ cos θ1 e−|r̂|2 : . (9)

Then we recall the Poisson integration formulation [7]

Jυ(z) = (z/2)υ√
π�(υ + 1/2)

∫ π

0
exp(iz cos θ) sin2υ θ dθ Re(ν) > −1

2
(10)

where Jυ(z) is the Bessel function, and z and ν are complex numbers. To further carry out the
integration over dθ1 in (9) we let −2i|r̂|r ′ = z, n

2 − 1 = ν (note n � 3), and use (10) to obtain∫ π

0
dθ1 sinn−2 θ1 e2|r̂|r ′ cos θ1 =

√
π�

(
n−1

2

)
(−i|r̂|r ′)

n
2 −1

J n
2 −1(−2i|r̂|r ′). (11)

Substituting (11) into (9) yields∫
dn �x | �x〉〈�x| = 2 :

∫ ∞

0
r ′ n

2 e−r ′2
J n

2 −1(−2i|r̂|r ′) dr ′ e−|r̂|2

(−i|r̂|) n
2 −1

: . (12)

Using the definition of Bessel function [7]

Jν(z) =
∞∑
l=0

(−1)lz2l+ν

l!�(ν + l + 1)
(13)

and that of the Gamma function

�(z) =
∫ ∞

0
e−t t z−1 dt Re(z) > 0 (14)
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we obtain∫
dn �x | �x〉〈�x| = 2 :

∫ ∞

0
r ′ n

2 e−r ′2
( ∞∑

l=0

(−1)l

l!�
(

n
2 + l

) (−i|r̂|r ′)2l+ n
2 −1

)
dr ′ e−|r̂|2

(−i|r̂|) n
2 −1

:

= :
∞∑
l=0

1

l!�
(

n
2 + l

) (∫ ∞

0
e−λλl−1+n/2 dλ

)
|r̂|2le−|r̂|2 :

= :
∞∑
l=0

1

l!
(|r̂|2)l e−|r̂|2 : = 1. (15)

By far, we have used the IWOP technique to confirm the n-dimensional completeness
relation

∫
dn �x | �x〉〈�x| in spherical polar coordinates.

2. The normal product form of the radial coordinate operator r̂k in n-dimensional
coordinate space

Now using (3) and (15) as well as the IWOP technique, we can derive the normal product
form of the radial coordinate operator r̂ k,

r̂k = 2 :

(∫ ∞

0
dr ′ r ′ n

2 +k

e−r ′2
J n

2 −1(−2i|r̂|r ′)
)

e−|r̂|2

(−i|r̂|) n
2 −1

:

= :
∞∑
l=0

1

l!�
(

n
2 + l

) (∫ ∞

0
e−λλl−1+ n+k

2 dλ

)
|r̂|2l e−|r̂|2 :

= :
∞∑
l=0

(−1)l�
(
l + n+k

2

)
l!�

(
n
2 + l

) |r̂|2l e−|r̂|2 : . (16)

With the help of the recurrence relation of the Gamma function [7]

�(z + n) = (z + n − 1)(z + n − 2) · · · z�(z) (n is an integer,n � 1)

equation (16) becomes

r̂ k = :
�
(

n+k
2

)
�
(

n
2

) ∞∑
l=0

(
n+k

2

)
l

l!
(

n
2

)
l

|r̂|2l e−|r̂|2 : (17)

where we have defined

(λ)0 = 1, . . . , (λ)n = λ(λ + 1) · · · (λ + n − 1) = �(λ + n)

�(λ)
n � 1.

For simplicity, it is worthwhile to rewrite the above result in terms of the confluent
hypergeometric function F(α; γ ; z),

F (α; γ ; z) =
∞∑
l=0

(α)l

l! (γ )l
zl. (18)

Thus

r̂ k = :
�
(

n+k
2

)
�
(

n
2

) F

(
n + k

2
; n

2
; |r̂|2

)
e−|r̂|2 : . (19)



Addendum 1535

Further, using Kummer’s first formula [8]

F(α; γ ; z) = ezF (γ − α; γ ; −z) (20)

we can further simplify (19) as

r̂ k = :
�
(

n+k
2

)
�
(

n
2

) F

(
−k

2
; n

2
; −|r̂|2

)
: . (21)

By far, we have derived the normally ordered expansion of power of radial coordinate operator
r̂ k in n-dimensional coordinate space. Note that n denotes the dimension of coordinate space.

In particular, when n = 3, (19) reduces to (note (−m)m+1 = (−m)m+2 = · · · = 0)

r̂2m= :
�(m + 3

2 )

�
(

3
2

) F

(
−m; 3

2
; −|r̂|2

)
: = :

(2m + 1)!!

2m

m∑
l=0

(−m)l

l!
(

3
2

)
l

(−|r̂|2)l :

= :
m∑

l′=0

(2m + 1)!!2−l′m!

l′!(m − l′)!(2m − 2l′ + 1)!!
|r̂|2m−2l′ :

= :
m∑

l′=0

(2m + 1)!

4l′ l′!(2m − 2l′ + 1)!
|r̂|2m−2l′ : (22)

as expected. When n = 4, (21) reduces to

r̂2m = : (m + 1)!
m∑

l=0

(−m)l

l!(2)l
(−|r̂|2)l :

= : (m + 1)!
m∑

l′=0

(−m)m−l′

(m − l′)!(2)m−l′
(−|r̂|2)m−l′ :

= :
m∑

l′=0

(m + 1)!m!

l′!(m − l′)!(m − l′ + 1)!
|r̂|2m−2l′ : . (23)

Equations (23) and (22) are quite different.
In summary, we have derived the normal product form of the radial coordinate operator r̂ k

in the n-dimensional coordinate space, which is a non-trivial generalization of [1]. Comparing
the derivation of this work with the integration procedures in our previous paper [1], we
conclude that the use of Bessel function defined in (18) has greatly simplified the calculation.
Moreover, the use of Kummer’s first formula for the confluent hypergeometric function makes
the result neat and concise.
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